Preparation and Properties of the New High Pressure Phase β -Zr(OH)PO₄

Akira Ono* and Fujio Peter OKAMURA National Institute for Research in Inorganic Material, Namiki, Ibaraki 305 (Received September 19, 1984)

A new phase with chemical formula Synopsis. Zr(OH)PO4 was prepared above 1.5 GPa using a high pressure apparatus. Stability field of the compound was investigated, and X-ray study for a single crystal revealed that it is orthorhombic with space group Cmca or C2ca. The X-ray data are similar to those of Zr₂O(PO₄)₂.

Phosphate compounds in the system ZrO₂-P₂O₅-H₂O have been studied in relation to the inorganic ion exchanger, Zr(HPO₄)₂·H₂O¹⁾ and the ceramic material with low thermal expansion, Zr₂O(PO₄)₂.^{2,3)} crystalline phases in this system are Zr_{0.25}Zr₂(PO₄)₃,4) ZrP₂O₇ and Zr(OH)PO₄.5 We have prepared a new high pressure compound isochemical with Zr(OH)-PO₄ reported by Chernorukov et al.⁹⁾ Hereafter, the low and high pressure phases will be called α - $Zr(OH)PO_4$ and β - $Zr(OH)PO_4$, respectively. Preparation and properties of the new phase will be described below.

Experimental

Starting Materials. Reagents used for synthesis were NH₄H₂PO₄, ZrO₂, and ZrOCl₂·8H₂O of a high purity. Three kinds of starting materials were used. First one was prepared from a mixture of ZrO2 and NH4H2PO4 with the Zr/P ratio equal to 1/2. The mixture was dried at 473 K for 24 h and then heated at 873 K for 5 h, and crystalline ZrP2O7 was obtained. A mixture of ZrP2O7 and water was used as a starting material for obtaining single crystals large enough for X-ray studies. Second starting material was an equimolar mixture of ZrP2O7 and ZrO2, which was used for most of the experiments carried out above 1 GPa. Third starting material was a gel prepared by mixing equimolar solutions of ZrOCl₂·8 H₂O and H₃PO₄. The gel dried at 323 K was used as a starting material for experiments below 0.2 GPa.

High Pressure Experiments. A piston cylinder type high pressure apparatus was used for experiments above 1 GPa. A pressure cell consists of a concentric assemblage of NaCl with 10% MoS₂, a carbon heater and pure NaCl. A platinum capsule containing the starting material and water (10-50 wt%) was put in the center of the pressure cell. Sizes of the cell are 12.7 mm in diameter and 400 mm in length. Temperature was measured by an alumel-chromel thermocouple in contact with the Pt capsule. Pressure was gradually raised up to a desired value at a given temperature. Pressure is a nominal value not corrected for friction. Run durations are 48 to 72 h.

Experiments below 0.2 GPa were performed using a cold seal high pressure vessel in order to establish the stability range of α -Zr(OH)PO₄. Temperature was measured by an internal thermocouple, and pressure by a calibrated Heise Bourdon tube pressure gauge. Pressure medium is pure water. The third starting material was sealed in a gold capsule together with water.

Characterization of the Products. After washing with distilled water, experimental products were examined using an optical microscope, an X-ray diffractometer, a Weissenberg camera, an infrared spectrometer and a differential thermal analyzer. X-Ray powder patterns taken with a Toshiba ADG 301 diffractometer were obtained at room temperature in the range $2\theta=7$ to 60° using Cu $K\alpha$

radiation. Weissenberg photographs for a single crystal of β-Zr(OH)PO₄ were obtained using Ni-filtered Cu Kα radiation. Infrared (IR) spectra recorded on a Hitachi model EPI-G3 IR spectrometer were measured in the frequency range 400 to 4000 cm⁻¹ by using the normal KBr disk Thermal analyses were performed in air with an ULVAC TA-1500 at a heating rate of 10 K min-1.

Synthetic crystals were analyzed using an electron probe microanalyzer, JXA 5A. Single crystals of ZrO2, ZrP2O7, and Zr₂O(PO₄)₂ were used as standards. Apparent concentration was corrected after the Bence-Albee method.6)

Results and Discussion

1) β -Zr(OH)PO₄. This phase was obtained above 1.5 GPa as shown by open circle in Fig. 1. Single crystals up to 100 µm were prepared together with Zr(HPO₄)₂·H₂O when ZrP₂O₇ and water were used as the starting material. From Weissenberg photographs it was seen that β -Zr(OH)PO₄ crystallized in the orthorhombic system, the following reflexions being systematically absent, hkl:h+k=2n (n:integer), 0kl:k=2n, h0l:l=2n, hk0:h=2n,00l:l=2n. extinctions indicate the space group to be Cmca or C2ca. Lattice constants are: a=0.6607, b=0.8657, c=1.1718 (nm). These are similar to those of $Zr_2O(PO_4)_2$: a=0.6624, b=0.8637, c=1.1872 (nm).

Weight loss for β -Zr(OH)PO₄ took place in the temperature range 683 to 943 K. Amount of the water loss is 4.2 wt%, which is consistent with the theoretical value of 4.4%. The X-ray diffraction pattern of the final product is the same as that of Zr₂O(PO₄)₂. The X-ray data for β-Zr(OH)PO₄ and Zr₂O(PO₄)₂ obtained here are listed in Table 1.

An IR spectrum of β -Zr(OH)PO₄ illustrated in Fig. 2 A exhibits an absorption band at 3560 cm⁻¹ which may be attributed to the OH stretching vibration and is absent for $Zr_2O(PO_4)_2$. Analytical result of β -Zr(OH)PO₄ using an electron probe microanalyzer is; Found: ZrO₂,60.32; P₂O₅,35.26; Total,95.58; H₂O,4.42

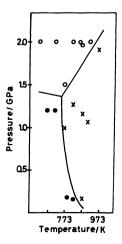


Fig. 1. Stability field of β-Zr(OH)PO₄. $\bigcirc: \beta\text{-}\mathrm{Zr}(\mathrm{OH})\mathrm{PO}_4, \ \bullet: \alpha\text{-}\mathrm{Zr}(\mathrm{OH})\mathrm{PO}_4, \ \times: \mathrm{Zr}_2\mathrm{O}(\mathrm{PO}_4)_2.$

TABLE 1. X-RAY POWDER DIFFRACTION DATA

	β-Zr(O	H)PO ₄			$Zr_2O(PO_4)_2$		α-Zr(OH)PO ₄	
	d	d_{cal}			d		d	
h k l	10 ⁻¹ nm	10 ⁻¹ nm	$I_{ m obsd}$	h k l	10 ⁻¹ nm	$I_{ m obsd}$	10 ⁻¹ nm	$I_{ m obsd}$
0 0 2	5.86	5.859	55	0 0 2	5.94	50	5.88	44
020	4.33	4.328	40	020	4.33	60	5.48	23
021	4.06	4.060	66	021	4.06	74	5.08	23
1 1 2	3.91	3.910	38	1 1 2	3.94	50	4.83	23
022	3.49	3.481	33	022	3.49	43	4.53	100
200	3.30	3.303	100	200	3.31	100	4.37	92
1 1 3	3.14	3.134	36	1 1 3	3.16	52	4.27	77
004	2.95	2.929	17	004	2.96	13	4.08	23
023	2.90	2.899	36	023	2.92	32	3.94	77
220	2.62	2.626	7	220	2.63	15	3.69	34
1 3 1	2.58	2.579	39	131	2.58	88	3.66	74
114	2.56	2.558	55	114			3.62	23
132	2.41	2.410	28	132	2.41	33	3.31	53
204	2.19	2.192	9	204			3.17	84
040	2.167	2.164	5	040			3.12	61
0 4 1	2.130	2.128	14	0 4 1	2.125	16	3.10	30
3 1 1	2.100	2.099	7	3 1 1			2.91	16
025	2.060	2.061	15	025	2.03	15	2.85	54
3 1 2	2.004	2.005	20	3 1 2	2.01	38	2.78	43
3 2 0	1.960	1.962	11	320	1.97	22	2.74	30
006	1.956	1.953	17	006			2.69	17
0 4 3	1.896	1.893	24	0 4 3	1.897	31	2.65	33
3 1 3	1.874	1.873	8	3 1 3	1.886	9	2.59	23
116	1.833	1.830	14	116	1.853	28	2.56	38
026	1.782	1.780	6	026	1.801	18		
3 3 1]	1 700	1.725	38	3 3 1]	1.735	66		
3 1 4	1.728	1.731	36	3 1 4	1.733	00		
3 3 2	1.679	1.677	8	3 3 2	1.682	16		
151	1.657	1.658	29	151	1.657	50		
0 4 5	1.589	1.590	22					

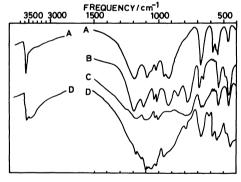


Fig. 2. IR spectra.
A: β-Zr(OH)PO₄, B: Zr₂O(PO₄)₂ prepared by heating
β-Zr (OH)PO₄ at 973 K, C: Zr₂O(PO₄)₂ prepared at
1.15 GPa, D: α-Zr(OH)PO₄ obtained at 1.2 GPa.

[100-Total]. Calcd for Zr(OH)PO₄: ZrO₂,60.64; P₂O₅,34.93 (wt%).

- 2) α -Zr(OH)PO₄. This phase was prepared below 1.2 GPa and represented by solid circle in Fig. 1. The X-ray powder pattern of α -Zr(OH)PO₄ obtained at 1.2 GPa is similar to that given in the literature.⁵⁾ Figure 2 D shows an IR spectrum for this material. An absorption band near 3560 cm⁻¹ is attributed to the OH stretching vibration.
- 3) Zr₂O(PO₄)₂. An IR spectrum of this material prepared at 873 K, 1.15 GPa is illustrated in Fig. 2C. The X-ray powder pattern of this phase is the same as that listed in Table 1.

The structure of dizirconium diorthophosphate⁷⁾ consists of chains composed of edge sharing ZrO₇ polyhedra which are connected by the P atoms in tetrahedral coordination. The chains are, however, partly bonded directly with each other by sharing an oxygen atom. If hydration of Zr₂O(PO₄)₂ takes place at the site of this oxygen atom, Zr₁-O-Zr₂ may change to Zr₁-OH+Zr₂-OH where Zr₁ and Zr₂ represent different chains. We propose that the structure of β -Zr(OH)PO₄ is similar to that of Zr₂O(PO₄)₂, but each chain is not joined directly. A structure similar to the proposed one is known for Hf(OH)2SO4.8) Hf(OH)₂SO₄ contains chains of [Hf(OH)2]n2+ which are joined by sulfate groups. The chains do not share any oxygen atom with each other.

References

- 1) A. Clearfield and J. A. Stynes, J. Inorg. Nucl. Chem., 26, 117 (1964).
- 2) D. E. Harrison, H. A. McKinstry, and F. A. Hummel, J. Am. Ceram. Soc., 37, 277 (1954).
- 3) I. Yamai, T. Oota, and S. Kawaminami, Ann. Rep. Ceram. Engin. Res. Lab. Nagoya Inst. Techn., 9, 23 (1982).
 - 4) J. Alamo and R. Roy, J. Am. Ceram. Soc., 78, 80 (1984).
- 5) N. G. Chernorukov, I. A. Korshunov, and M. I. Zhuk, Russ. J. Inorg. Chem., 28 (7), 934 (1984).
 - 6) A. E. Bence and A. L. Albee, J. Geol., 93, 500 (1970).
- 7) V. W. Gebert and E. Tillmanns, *Acta Crystallogr.*, *Sect.* **B 31**, 1768 (1975).
 - 8) M. Hansson, Acta Chem. Scand., 27, 2455 (1973).